
  
 
 
 

Journal of Mechanical Science and Technology 23 (2009) 559~568 
      www.springerlink.com/content/1738-494x

DOI 10.1007/s12206-008-1119-9 

Journal of 
Mechanical 
Science and 
Technology 

 
Defect diagnostics of SUAV gas turbine engine using hybrid SVM-

artificial neural network method† 
Sang-Myeong Lee, Tae-Seong Roh* and Dong-Whan Choi 

Aerospace Department, Inha University, Incheon, 402-571 Republic of KOREA 
 

(Manuscript Received August 11, 2008; Revised October 11, 2008; Accepted November 20, 2008) 

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Abstract 
 
A hybrid method of an artificial neural network (ANN) combined with a support vector machine (SVM) has been 

developed for the defect diagnostic system applied to the SUAV gas turbine engine. This method has been sug-
gested to overcome the demerits of the general ANN with the local minima problem and low classification accuracy 
in case of many nonlinear data. This hybrid approach takes advantage of the reduction of learning data and converg-
ing time without any loss of estimation accuracy because the SVM classifies the defect location and reduces the 
learning data range. The results of test data have shown that the hybrid method is more reliable and suitable algo-
rithm than the general ANN for the defect diagnosis of the gas turbine engine. 
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1. Introduction 

Recently, the development of a defect diagnostic 
system for an aircraft gas turbine engine has been of 
concern for induction of early repair prediction and 
economical efficiency as well as safe operation.[1-4] 
The defect diagnostic system of the gas turbine engine 
usually decides whether the engine is operating well or 
not after it generally measures major engine parame-
ters and analyzes a certain tendency. The healthy state 
of the engine and the cost reduction of its maintenance 
and repair could be obtained with the confirmation or 
the early detection of defects.[1, 5, 6] Additionally, the 
increased stability, maneuverability, and reliability of 
an in-flight aircraft would be acquired with prevention 
of unexpected failure of the engine.[7, 8] 

In order to develop the defect diagnostic system, 
ANN, GA, and SVM algorithms have been commonly 
used.[2, 5, 9-12] Among them, the ANN algorithm has 

been widely used to solve the pattern recognition 
problem for defect diagnostic systems.[5, 12, 13] The 
neural network algorithm is able to predict the charac-
teristics of uncertain groups based on the specific in-
formation. However, this tool has a few weak points: it 
needs many data and it is too difficult to know the 
ending time of learning. Since the most serious prob-
lem is the possibility of falling in the local minima 
instead of the global minima, it becomes very difficult 
to obtain good convergence and high accuracy ra-
tios.[2] To solve these problems, the ANN algorithm 
has been suggested to be combined with the SVM 
algorithm.[14, 15] The SVM is a functional and effi-
cient algorithm that can carry out classifying analysis 
of acquired data and show more efficient classifying 
performance with fewer data.[16-18] While the SVM 
is applied as a sorter of the defect location accompa-
nied by an enormous amount of data, the neural net-
work algorithm can be only applied to estimate the 
seriousness of the defects. This hybrid approach takes 
advantage of the reduction of learning data and con-
verging time without any loss of estimation accuracy 
because the SVM classifies the defect location and 
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reduces the learning data range. 
In this work, the proposed algorithm has diagnosed 

the defects for both single and dual components of an 
SUAV turbo-shaft engine through three cases: take-off, 
cruise, and high altitude conditions. Since the learning 
time of the hybrid method has been decreased notably 
for the generated map composed of weights and biases, 
it is helpful to obtain better accuracy and convergence. 
The results of test data have verified that the hybrid 
method is the more reliable and suitable algorithm in 
the defect diagnostics than the general ANN. It is also 
shown that the hybrid method can be a reliable diag-
nostic tool even in case of the off-design condition 
with increased operating data. 
 

2. The hybrid method 

2.1 Structure of the hybrid method 

Fig. 1 shows the hybrid method structure. The de-
fect position has been detected by the SVM algorithm 
and the defect magnitude on the detected position has 
been estimated by the ANN separately. If the com-
pressor defect group is supposed to be the class 1, and 
when a defect occurs in the compressor position, the 
SVM algorithm classifies and has the occurred defect 
belonging to class 1. The ANN, therefore, starts learn-
ing only classified data as the class 1 without all input 
data. 

 
2.2 Support Vector Machine (SVM) 

The SVM presumes a hyper-plane which classifies 
learning data into two classes. There can exist many 
such planes, but only one plane is shown to maximize 
the margin among the classes.[16, 17] When two 
classes exist on the concerned domain, the optimal 
hyper-plane can be calculated in order that the margin 
becomes maximized. 

 
 
Fig. 2. Sample test data group of SVM. 

 
The Lagrange function has been applied and solved 

by QP solver [19] in order to obtain the maximized 
margin, resulting in the hyper-plane equation, w, x+ b. 
The decision function with the hyper-plane equation 
has been used to classify the class belonging to op-
tional vectors: 
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The SVM algorithm has been expanded to the mul-

ti-class SVM to classify the multiple groups,[20] such 
as the form of the “One vs. One” multi-class SVM 
suggested by Clarkson and Moreno.[21] For the veri-
fication of the SVM used in this study, arbitrary data 
sets have been classified. As shown in Fig. 2, sample 
data sets of two classes are selected randomly. Fig. 3 
shows the classification of sample data by the hyper-
plane. For example, if the test data, (4,2), (8,3), and 
(1,7) are located at XY-coordinates, they are in class 1 
as shown in Figs. 2 and 3.  

 
 
Fig. 1. The Hybrid method of SVM and ANN. 
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Fig. 3. Classified sample test data group by hyper plane. 

 
Similarly, this method has also been applied for the 

defect diagnostics. The multi-class SVM has been 
used for 7-class cases considering multiple defects. 
Following the “one vs. one” method, one class is 
compared with other classes. The SVM needs labels, 
y=-1 or y=+1, for classified data. The sign of the label 
is decided by the order of comparison because the 
label means where the data are located. For instance, 
assuming that the test data belong to class 2, then the 
labels for them should be y= -1 because the compari-
son orders, class 1, 3, 4, 5, 6, and 7 versus class 2. To 
the contrary, the labels must be y= +1, when class 
2(y=+1) compared with others(y=-1). 
 
2.3 Artificial Neural Network (ANN) 

The organized neural network using the Multi-layer 
perceptron [9] as the most general form has been ap-
plied for the error backpropagation algorithm. Infor-
mation from the input-layer is multiplied by weights 
and biases before it is transferred to the hidden-layer. 
In a similar method, the calculated information of the 
hidden-layer is delivered to the output-layer. The 
ANN output is computed through this process. Conse-
quently, in order to make the error between the ANN 
output and the desired output be the least, the weights 
and biases can be changed. This process is repeated 
until the error is satisfied with the condition of conver-
gence. The weights and biases as calculation results 
are stored to decide the state of new data. Momentum 
theory [22] has been used to promote the convergence 
of the ANN and the sigmoid function [8,12] used to 
classify the nonlinear input pattern has been applied as 
below: 

 

Table 1. Design point of the turbo-shaft engine. 
 

Variables Values 

Atmospheric condition Sea-level Static Standard 
Condition 

Mass flow rate (kg/s) 2.008 
Fuel flow rate (kg/s) 0.0402 

Compressor pressure ratio 8.037 
TIT (K) 1254 

Shaft horse power (hp) 416 
SFC (kg/kW hr) 0.3478 

Gas generator rotational 
Speed (100% RPM) 54850 

Propeller rotational speed 
(100% RPM) 6000 

 

 
 
Fig. 4. Characteristic map of Centrifugal compressor map. 
 

  
Fig. 5. Characteristic map of power turbine. 
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The dimension of the output-layer has been only 1 

in case of single defect cases for the ANN of the hy-
brid method because the defect position has been 
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already classified by the SVM. Accordingly, the re-
sult of the ANN of the hybrid method has shown 
better accuracy. However, the dimension of the out-
put layer for the ANN algorithm should increase to 3 
if the considered defect components of the engine are 
3. Then the estimation accuracy of the ANN may get 
worse since the number of the connected nodes and 
learning time are increased with the increased dimen-
sion of the output-layer. 
 

3. Application to defect diagnostics of turbo-
shaft engine 

3.1 Engine selection and modeling 

In this paper, a turbo-shaft engine has been selected 
for study. On-design and off-design performance data 
of engine have been composed of the centrifugal 
compressor map and the turbine map provided by the 
GSP, and scaled for our own purposes. Fig. 4 and Fig. 
5 show the characteristic maps of the centrifugal com-
pressor and the turbine, respectively. Table 1 shows 
the design points of the turbo-shaft engine chosen for 
this study. 

 
3.2 Applying the hybrid method to off-design condi-

tion 

The hybrid method has been applied for the off-
design condition, especially altitude and velocity 
variations according to the fuel flow rates. The re-
quired number of the learning data sets for the hybrid 
method has been 28 for single defect cases and 148 
for multiple defect cases, respectively. The altitude 
has been divided into 20 steps by increasing 240m 
from 240m to the maximum operating altitude 
4,800m. Each altitude data set includes the learning 
data of velocity variations from Mach 0.2 to Mach 0.4. 
The data sets have been imposed between -1.0% and -
5.0% of the defect range for each component. Even 
though the ANN learns according to altitude varia-
tions, if the defect position has not been classified by 
the SVM, it should learn 528 data sets (28 3 possibili-
ties of single defect positions + 148 3 possibilities of 
multiple defect positions) including all the possible 
position data. In general, prediction accuracy of the 
ANN algorithm depends on the amount of learning 
data, and its total learning time also increases because 
of the possibility of non-convergence problems due to 
the increased size of data.[22, 24] 
 

 
 
Fig. 6. Application of hybrid method in off-design condition. 

 
Fig. 6 shows the application of the hybrid method 

in off-design condition. If a single defect occurs in the 
compressor, for example, the defect position is indi-
cated by the SVM. The ANN does not have to use all 
information data to estimate the defect magnitude. It 
only needs 28 learning data sets. For the case of mul-
tiple defects, the ANN learns only 148 data sets in a 
similar manner. In contrast, the general ANN, if used 
independently, needs 528 learning data sets for both 
single and multiple defect conditions. The hybrid 
method, therefore, needs much fewer learning data 
sets. 

 
3.3 Process of defect diagnostics 

Three locations of the compressor, the G-G turbine 
and the power turbine have been selected for the de-
fect position. The single and dual defect cases of the 
components have been investigated. As shown in Ta-
ble 2, the input data for the hybrid method and the 
ANN are total temperature ratio and total pressure 
ratio of the compressor, total temperature ratio of the 
G-G turbine, and total temperature ratio of the power 
turbine according to variations of altitude, velocity and 
fuel flow rates. The output data of the ANN algorithm 
are isentropic efficiencies of the components. 

To check the capability and reliability, the hybrid 
method has been applied to the various off-design 
performance conditions of which the number of re-
quired data has been more than 20 times to that of the 
sea-level static condition. The learning for the defect 
diagnostics has been considered in off-design condi-
tion of variations of altitudes and Mach numbers as 
shown in Table 3. 
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Table 2. Input data and output data of hybrid method. 
 

 Input Data Output Data

SVM 

Y= 1 
(Subjective 

value)  
or Y= -1 (Ob-
jective value)Hybrid 

Method 
 

ANN 

 

Training 
Sets 

General ANN 

3 2
/

t t
T T  

3 2
/

t t
P P  

4 7
/

t t
T T  

7 8
/

t t
T T  Deteriorated 

isentropic 
efficiency 

 
Table 3. Input variables to learn. 
 

 Altitude Velocity Input defect 
magnitude 

Compressor 

G-G turbine 

Power turbine 
Comp + 

G-Turbine 
Comp + 

P-Turbine 
G-Turbine + 
P-Turbine 

240m, 
480m, 
720m, 

~ 
4560m, 
4800m 

M 0.2, 
~ 

M 0.4 

-0.5%, 
-1%, 
-2%, 

~ 
-5% 

 
Table 4. Test data selection in 3 cases. 
 

Case 
condition 

Altitude 
[m] 

Velocity 
[Mach No.] 

Fuel flow 
rate [kg/s] 

Take off 0 0 0.0402 
Cruise 3,000 M 0.34 0.038 

High altitude 4,200 M 0.3 0.032 
 Defect [%] Test data No. 

Compressor 8 sets 
G-G turbine 8 sets 

Power 
turbine 8 sets 

Comp + 
G-Turbine 64 sets 

Comp + 
P-Turbine 64 sets 

G-Turbine + 
P-Turbine 

-1% 
 

~ 
 

-5% 
(Random defect 

magnitude) 
64 sets 

 
Table 4 shows test data for three cases: take-off, 

cruise, and high altitude conditions. The sea-level 
static condition is quite important to manage the en-
gine on the ground. The cruise condition has been 
selected by the objective mission of the SUAV model. 
The high altitude condition has been chosen around 
4800 m, which is the maximum operating altitude of 
the engine. 

The single and dual component defect cases have  

Table 5. Comparison average learning time of hybrid method 
and general ANN. 
 

Hybrid method General ANN Case 
Condition Single 

defect 
Multiple 
defects 

Single 
defect 

Multiple 
defects 

Take off 0.8 s 18.8 s 122.1 s 
Cruise 4.5 s 87.4 s 312.1 s 

High altitude 4.2 s 89.6 s 245.6 s 
 

used 8 sets and 64 sets, respectively. These test data 
have been applied to both the hybrid method and the 
ANN. The fuel flow rate of take-off condition has 
been 0.0402 kg/s. In case of cruise condition, the alti-
tude, the velocity, and the fuel flow rate have been 
3,000m, Mach 0.34, and 0.038 kg/s, respectively. The 
last test case is the high altitude condition: The altitude, 
the velocity, and the fuel flow rate have been 4,200m, 
Mach 0.3, and 0.032 kg/s, respectively. The defect 
location has total six cases including three single de-
fect positions and three dual defect positions. 

Table 5 shows the average learning time of the hy-
brid method and the general ANN. For cruise condi-
tion, the average learning time of the hybrid method 
has been 4.5 seconds for single defect and 87.4 sec-
onds for multiple defects, respectively. On the other 
hand, the general ANN has estimated up to 312.1 sec-
onds. The results of the general ANN have not been 
separated into single and multiple defects. The general 
ANN should learn all the learning data because the 
defect position has not been identified. That is why the 
learning time of ANN is much longer than that of the 
hybrid method. The ANN algorithm has the character-
istic that it has good convergence performance only in 
case the learning time is short. The ANN algorithm 
should have sufficient weights and biases in order to 
determine the defect magnitude accurately before the 
engine operates in off-design condition. The ANN 
may have reliable accuracy and high convergence rate 
only with a sufficient and well organized map of 
weights and biases. 
 

4. Decision of defect position 

The examples shown in Figs. 2 and 3 are two-
dimensional data. The input data of this study are, 
however, four-dimensional data as shown in Table 2. 
The algorithm of 2-D classification has been expanded 
for 4-D data. The array of input data has been changed 
and the multi-class SVM has been executed. The mul-
ti-class SVM has shown good classification perform- 
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Table 6. Dividing classes according to defect position. 
 

Class 1 2 3 4 5 6 7

 Normal 
 

Abnormal  
(Single  
defect) 

Abnormal (Mul-
tiple defects) 

Compressor - O - - O O - 

G-G  
Turbine - - O - O - O

Power turbine - - - O - O O

 
Table 7. SVM classification results of test data. 
 

Defect 
Position 

Test  
data 

Classification 
accuracy 

Average 
convergence 

time 

Compressor 

G-G 
turbine 

Take off 100 % 36.7 s 

Power 
turbine 
Comp +  

G-Turbine 

Cruise 100 % 36.2 s 

Comp +  
P-Turbine 

G-Turbine + 
P-Turbine 

High 
 altitude 100 % 37.1 s 

 
ance irrespective of the dimension of the input data. 

Table 6 shows seven states of engine conditions, 
existing in both normal and abnormal states: class 1 
for the normal data group, class 2 for the compressor 
defect data group, class 3 for the G-G turbine defect 
data group, class 4 for the power turbine defect data 
group, class 5 for the compressor and G-G turbine 
defect data group, class 6 for the compressor and 
power turbine defect data group, and class 7 for the 
G-G turbine and power turbine defect data group.  

Total temperature ratio and total pressure ratio from 
sensed parameters of each engine component are 
compared with the normal state. The defect location 
can be finally identified when there exists any defect. 
The optional defects have been given to components 
for the take-off condition, the cruise condition, and a 
high altitude of 4,200m condition, respectively. All 
test data have been classified 100% as shown in Table 
7. The average convergence time per the case of each 
defect prediction has been 36.7 seconds. It is con-
firmed that the suggested multi-class SVM algorithm 
has high classification accuracy without any failure 
even for the 20 times as much of data sets compared 
with those of the sea-level static condition. 

 
(a) Compressor 

 
(b) G-G turbine 

 
(c) Power turbine 

 
Fig. 7. RMS defect error rate of single defect in cruise condition 
 

5. Estimation of defect magnitude 

The defect data group classified by the SVM has to 
be evaluated by the ANN for the determination of the 
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defect magnitude. The advantage of the hybrid algo-
rithm is that the parameters acquired at any altitude 
and velocity can be processed in real time to estimate 
the defect seriousness with high accuracy because the 
map of weights and biases has been obtained suffi-
ciently according to the variations of the altitude, the 
velocity and the fuel flow rate. 

The test data have been selected as the defect value 
of three cases - take-off, cruise, and high altitude con-
ditions - as shown in Table. 4. Fig. 7 shows the com-
parison of the defect estimation with RMS error in 
case of the single defect in cruise condition. Equation 
(3) presents RMS defect error rate, which can be cal-
culated by the difference between the real and the 
calculated defects. 

 

2

1

[%] ( 100%) /
N

real cal
i

i real

D D
RMS defect error rate N

D=

−
= ×∑  

 (3) 
 
The test data number on the horizontal-axis has 

been increased according to the given defect magni-
tude. The defect magnitude has been represented on 
the vertical-axis. In Fig. 7(a) for the compressor de-
fect, in case of test data No. 1 with the given defect -
1.128 % (shown in blank rod), the compared error is 
about 4.5% with the calculated defect -1.179% 
(shown in stuff rod). The errors of other test data No. 
have been shown in similar manner. The RMS error 
rate of the compressor defect shown in Fig. 7(a) is 
about 2.0%. Figs. 7(b) and 7(c) show the results of the 
G-G turbine and the power turbine in the same way. 
The RMS defect error rates for the G-G turbine and 
the power turbine are about 5.7 % and 1.6 %, respec-
tively. The errors of the G-G turbine are higher than 
other components, which is a general trend caused by 
characteristics of each component. 

Fig. 8 shows a comparison of the RMS defect error 
rates of dual defects in cruise condition. The total test 
data number is 64 because the number of test data for 
dual defects is a square of the single defect number. 
In Fig. 8a, for example, for the compressor of the test 
data No.1 with -1.3 % of defect, the G-G turbine de-
fects have eight sets of test data numbers between -
1.3% and -5%. The given and calculated defects of 
the compressor and the G-G turbine have been shown 
as a square (■, □) and a triangle (▲, △), respec-
tively. Similar to the same calculation of the single 
defect case, the RMS defect error rates of Comp +  

 

(a) Compressor + G-G turbine 

 
(b) Compressor + power turbine 

 
(c) G-G turbine + power turbine 

 
Fig. 8. RMS defect error rate of multiple defects in cruise 
condition. 
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GG-T, Comp + PT, and GG-T + PT cases have been 
about 2.3 % / 6.2 %, 1.6 % / 3.1 %, and 3.3 % / 3.7 %, 
respectively.  

The defect estimation for the take-off and the high 
altitude conditions also has been calculated. The calcu-
lation results are summarized in Table 8 for both sin-
gle and multiple defects of three cases: take-off, cruise, 
and high altitude conditions. The results of the hybrid 
method have been compared with those of the general 
ANN algorithm. 

In case of cruise condition in Table 8, the RMS de-
fect error rates of the hybrid method are about 2.0, 5.7, 
and 1.6 % for each single component defect, while 
those of the general ANN are 15.8, 13.0, and 36.2 %, 
respectively. In the multiple defects case of the com-
pressor + power turbine, it is shown about 1.6 % / 
3.1 % for the hybrid method and about 13.5% / 40.7 % 
for the general ANN, respectively. From the results 
shown in the table, it has been verified that the pro-
posed hybrid method has better defect estimation ac-
curacy than the general ANN for all tested conditions. 
 

6. Conclusion 

This study has proposed a hybrid method composed 
of the SVM and ANN algorithms for defect diagnosis 
of an SUAV gas turbine engine. The ANN learns se-
lectively after classification of defect patterns and 
discrimination of defect position using the SVM, re-
sulting in higher classification accuracy rate as well as 
the rapid convergence by decreasing the nonlinearity 
of the input data. By qualitative learning with the 
SVM, the location of defect parts can be classified 
perfectly. This hybrid method takes advantage of re-
duction of learning data and converging time without 

any loss of estimation accuracy, because the SVM 
classifies the defect location and reduces the data 
range. The proposed algorithm has diagnosed the de-
fects for both single and dual components through 
three cases: take-off, cruise, and high altitude condi-
tions. The hybrid method has notably decreased the 
learning time for the map generation composed of 
weights and biases, and it has been helpful in obtain-
ing better accuracy and convergence in the defect di-
agnostics. The comparisons of the RMS error rates of 
the hybrid method have shown good results in three 
test cases. The results of test data have verified that the 
hybrid method is the more reliable and suitable algo-
rithm in the defect diagnosis than the general ANN. It 
is also shown that the hybrid method can be a reliable 
diagnostic tool even in case of the off-design condition 
with increased operating data. The hybrid method with 
a proper extension might be, therefore, reliable and 
suitable for the defect diagnostics of the gas turbine 
engines. 
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Nomenclature----------------------------------------------------------- 

ANN : Artificial Neural Network 
B : Standard vector of hyper-plane 
calD  : Calculated defect magnitude 
realD  : Real defect magnitude 

GA : Genetic Algorithm 
GG-T : Gas Generator Turbine 

Table 8. RMS defect error rate of multiple defects in cruise condition. 
 

RMS defect error rate [%] 

Hybrid method General ANN  
Take off 
condition 

Cruise 
condition 

High altitude
condition 

Take off 
condition 

Cruise 
Condition 

High altitude 
condition 

Compressor 4.6 2.0 1.65 11.94 15.75 5.90 

G-G turbine 1.07 5.66 2.02 12.03 12.95 8.39 

Power turbine 5.20 1.59 4.12 35.52 36.17 44.73 
Comp + 

G-Turbine 4.92 5.95 2.31 6.16 2.63 1.95 7.49 14.26 10.63 16.14 6.37 11.17

Comp + 
P-Turbine 2.07 3.31 1.55 3.06 1.05 1.51 12.87 38.33 13.47 40.72 4.27 51.22

G-Turbine + P-
Turbine 2.90 5.61 3.33 3.68 3.73 3.33 7.12 19.73 10.32 22.05 5.16 39.21
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N  : Data set number 
P-T : Power Turbine 
P : Total pressure 
SFC : Specific Fuel Consumption 
SVM : Support Vector Machine 
T : Total temperature 
TIT : Turbine Inlet Temperature 
w  : Direction vector of hyper-plane 
y  : Labels 
α  : Lagrange Multiplier 

 
Subscripts 

cal : Calculated defect 
real : Real defect 
t2 : Compressor inlet 
t3 : Combustor inlet 
t4 : GG-turbine inlet 
t7 : Power turbine inlet 
t8 : Power turbine outlet 
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